Fast learning of fast transforms, with guarantees Ecole d'été de Peyresq 2022

Quoc-Tung Le, Léon Zheng, Elisa Riccietti, Rémi Gribonval

June, 2022

Approximating a matrix by a product of sparse factors Given a matrix **Z** and $J \ge 2$, find sparse factors $\mathbf{X}^{(J)}, \dots, \mathbf{X}^{(1)}$ such that

$$\mathbf{Z} \approx \mathbf{X}^{(J)} \mathbf{X}^{(J-1)} \dots \mathbf{X}^{(1)}.$$

Given a matrix ${\bf Z}$ and $J \geq 2$, find sparse factors ${\bf X}^{(J)}, \dots, {\bf X}^{(1)}$ such that

$$\mathbf{Z} \approx \mathbf{X}^{(J)} \mathbf{X}^{(J-1)} \dots \mathbf{X}^{(1)}$$
.

Application (Large-scale inverse problem)

Reduce time/memory complexity: find \mathbf{x} such that $\mathbf{y} = \mathbf{Z}\mathbf{x}$.

Given a matrix ${\bf Z}$ and $J \geq 2$, find sparse factors ${\bf X}^{(J)}, \dots, {\bf X}^{(1)}$ such that

$$\mathbf{Z} \approx \mathbf{X}^{(J)} \mathbf{X}^{(J-1)} \dots \mathbf{X}^{(1)}$$
.

Application (Large-scale inverse problem)

Reduce time/memory complexity: find \mathbf{x} such that $\mathbf{y} = (\mathbf{X}^{(J)} \dots \mathbf{X}^{(1)})\mathbf{x}$.

Given a matrix ${\bf Z}$ and $J \geq 2$, find sparse factors ${\bf X}^{(J)}, \dots, {\bf X}^{(1)}$ such that

$$\mathbf{Z} \approx \mathbf{X}^{(J)} \mathbf{X}^{(J-1)} \dots \mathbf{X}^{(1)}.$$

Application (Large-scale inverse problem)

Reduce time/memory complexity: find \mathbf{x} such that $\mathbf{y} = (\mathbf{X}^{(J)} \dots \mathbf{X}^{(1)})\mathbf{x}$.

Application (Deep neural network compression)

Replace a dense **weight** matrix **Z** by $X^{(J)} \dots X^{(1)}$.

Figure: Variants of Vision Transformers [Dosovitskiy et al, 2021]

Model	Layers	${\it Hidden \ size \ } D$	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large		1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

Problem formulation

$$\min_{\mathbf{X}^{(1)},...,\mathbf{X}^{(J)}} \left\| \mathbf{Z} - \mathbf{X}^{(J)} \mathbf{X}^{(J-1)} ... \mathbf{X}^{(1)} \right\|_F^2, \quad \text{such that } \{\mathbf{X}^{(\ell)}\}_{\ell} \text{ are sparse.} \quad (1)$$

Choices for sparsity constraint:

- **1** Classical sparsity patterns: *k*-sparsity by column and/or by row
- **②** Fixed-support constraint: supp($\mathbf{X}^{(\ell)}$) $\subseteq \mathbf{S}^{(\ell)}$ for $\ell = 1, \ldots, J$.

Problem formulation

$$\min_{\mathbf{X}^{(1)},...,\mathbf{X}^{(J)}} \left\| \mathbf{Z} - \mathbf{X}^{(J)} \mathbf{X}^{(J-1)} ... \mathbf{X}^{(1)} \right\|_F^2, \quad \text{such that } \{\mathbf{X}^{(\ell)}\}_{\ell} \text{ are sparse.} \quad (1)$$

Choices for sparsity constraint:

- Classical sparsity patterns: k-sparsity by column and/or by row
- **②** Fixed-support constraint: supp($X^{(\ell)}$) $\subseteq S^{(\ell)}$ for $\ell = 1, ..., J$.

A difficult problem

- Sparse coding is NP-hard [Foucart et al. 2013].
- Fixed-support setting is NP-hard for J=2 factors [Le et al. 2021].
- Gradient-based methods [Le Magoarou et al. 2016] lack guarantees.

When is the problem well-posed and tractable? (case with J=2)

- Conditions for uniqueness of the solution [Zheng et al. 2022]
- Conditions for achieving global optimality [Le et al. 2021]

When is the problem well-posed and tractable? (case with J=2)

- Conditions for uniqueness of the solution [Zheng et al. 2022]
- 2 Conditions for achieving global optimality [Le et al. 2021]
- ightarrow We study a fixed-support constraint $(J \ge 2)$ satisfying such conditions.

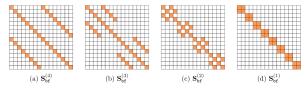


Figure: Butterfly structure: $supp(\mathbf{X}^{(\ell)}) \subseteq \mathbf{S}_{bf}^{(\ell)} := \mathbf{I}_{\mathbf{N}/2^{\ell}} \otimes \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \otimes \mathbf{I}_{2^{\ell-1}}.$

When is the problem well-posed and tractable? (case with J=2)

- Conditions for uniqueness of the solution [Zheng et al. 2022]
- Conditions for achieving global optimality [Le et al. 2021]
- ightarrow We study a fixed-support constraint $(J \ge 2)$ satisfying such conditions.

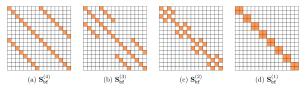


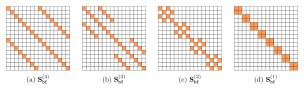
Figure: Butterfly structure: $supp(\mathbf{X}^{(\ell)}) \subseteq \mathbf{S}_{bf}^{(\ell)} := \mathbf{I}_{\mathbf{N}/2^{\ell}} \otimes \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \otimes \mathbf{I}_{2^{\ell-1}}.$

Why butterfly structure?

- Allows fast $\mathcal{O}(N \log N)$ matrix-vector multiplication
- Captures DFT, DCT, Hadamard, convolution, ... [Dao et al. 2020]

When is the problem well-posed and tractable? (case with J=2)

- Conditions for uniqueness of the solution [Zheng et al. 2022]
- ② Conditions for achieving global optimality [Le et al. 2021]
- ightarrow We study a fixed-support constraint $(J \ge 2)$ satisfying such conditions.



 $\text{Figure: Butterfly structure: supp}(\textbf{X}^{(\ell)}) \subseteq \textbf{S}^{(\ell)}_{\text{bf}} := \textbf{I}_{\textbf{N}/2^{\ell}} \otimes \left[\begin{smallmatrix} 1 & 1 \\ 1 & 1 \end{smallmatrix}\right] \otimes \textbf{I}_{2^{\ell-1}}.$

Main contribution

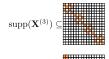
An efficient **hierarchical algorithm** to approximate **any** matrix by a product of **butterfly** factors.

$$\mathrm{supp}(\mathbf{X}^{(2)})\subseteq$$

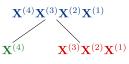
$$\operatorname{supp}(\mathbf{X}^{(3)})\subseteq$$

$$\operatorname{supp}(\mathbf{X}^{(1)})\subseteq$$

$$\mathrm{supp}(\mathbf{X}^{(2)})\subseteq$$



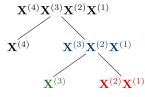
$$\operatorname{supp}(\mathbf{X}^{(1)})\subseteq$$



$$\operatorname{supp}(\mathbf{X}^{(2)})\subseteq$$

$$\operatorname{supp}(\mathbf{X}^{(3)})\subseteq$$

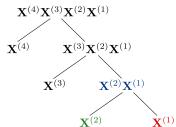
$$\operatorname{supp}(\mathbf{X}^{(1)})\subseteq$$



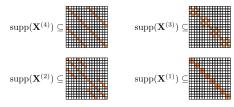
$$\operatorname{supp}(\mathbf{X}^{(2)})\subseteq$$

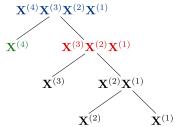
$$\operatorname{supp}(\mathbf{X}^{(3)})\subseteq$$

$$\operatorname{supp}(\mathbf{X}^{(1)}) \subseteq$$



Let $Z := X^{(4)}X^{(3)}X^{(2)}X^{(1)}$ such that:



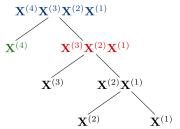


How to recover the partial products?

Let $Z := X^{(4)}X^{(3)}X^{(2)}X^{(1)}$ such that:

$$\operatorname{supp}(\mathbf{X}^{(3)}) \subseteq \begin{bmatrix} \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} \end{bmatrix}$$

$$\operatorname{supp}(\mathbf{X}^{(1)}) \subseteq \begin{bmatrix} \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} \end{bmatrix}$$



How to recover the partial products? \rightarrow use their known supports

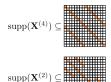
Lemma (Supports of the partial products)

$$\mathrm{supp}(X^{(4)})\subseteq {\color{red} {\bf X}^{(4)}}={\bf S}_{\mathtt{bf}}^{(4)} \qquad \quad \mathrm{supp}({\color{blue} {\bf X}^{(3)}}{\color{blue} {\bf X}^{(2)}}{\color{blue} {\bf X}^{(1)}})\subseteq$$

$$\operatorname{supp}(\mathbf{X}^{(3)}\mathbf{X}^{(2)}\mathbf{X}^{(1)}$$

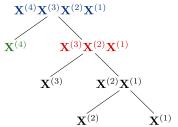
$$=\mathbf{S}_{\mathtt{bf}}^{(3)}\mathbf{S}_{\mathtt{bf}}^{(2)}\mathbf{S}_{\mathtt{bf}}^{(1)}$$

Let $Z := X^{(4)}X^{(3)}X^{(2)}X^{(1)}$ such that:



$$\mathrm{supp}(\mathbf{X}^{(3)})\subseteq \blacksquare$$

$$\mathrm{supp}(\mathbf{X}^{(1)})\subseteq \blacksquare$$



How to recover the partial products? \rightarrow use their known supports

Lemma (Supports of the partial products)

$$\mathrm{supp}(\mathbf{X}^{(4)})\subseteq {\color{red}\mathbf{S}_{\mathtt{bf}}^{(4)}}=\mathbf{S}_{\mathtt{bf}}^{(4)}$$

$$\operatorname{supp}(\mathbf{X}^{(4)}) \subseteq \mathbf{S}_{\mathsf{bf}}^{(4)} \qquad \operatorname{supp}(\mathbf{X}^{(3)}\mathbf{X}^{(2)}\mathbf{X}^{(1)}) \subseteq \mathbf{S}_{\mathsf{bf}}^{(3)}\mathbf{S}_{\mathsf{bf}}^{(2)}\mathbf{S}_{\mathsf{bf}}^{(1)}$$

Two-layer fixed-support problem:

$$\min_{\mathbf{A},\mathbf{B}} \|\mathbf{Z} - \mathbf{A}\mathbf{B}\|_F^2, \text{ s.t. supp}(\mathbf{A}) \subseteq \mathbf{S}_{\mathrm{bf}}^{(4)}, \text{ supp}(\mathbf{B}) \subseteq \mathbf{S}_{\mathrm{bf}}^{(3)} \mathbf{S}_{\mathrm{bf}}^{(2)} \mathbf{S}_{\mathrm{bf}}^{(1)}$$
(2)

$$\min_{\mathbf{A},\mathbf{B}} \|\mathbf{Z} - \mathbf{A}\mathbf{B}\|_F^2, \text{ s.t. supp}(\mathbf{A}) \subseteq \mathbf{S}_{\mathrm{bf}}^{(4)}, \text{ supp}(\mathbf{B}) \subseteq \mathbf{S}_{\mathrm{bf}}^{(3)} \mathbf{S}_{\mathrm{bf}}^{(2)} \mathbf{S}_{\mathrm{bf}}^{(1)}$$
(2)

$$\min_{\mathbf{A},\mathbf{B}} \|\mathbf{Z} - \mathbf{A}\mathbf{B}\|_F^2, \text{ s.t. supp}(\mathbf{A}) \subseteq \mathbf{S}_{\mathrm{bf}}^{(4)}, \text{ supp}(\mathbf{B}) \subseteq \mathbf{S}_{\mathrm{bf}}^{(3)} \mathbf{S}_{\mathrm{bf}}^{(2)} \mathbf{S}_{\mathrm{bf}}^{(1)} \tag{2}$$

Fact:
$$\mathbf{AB} = \sum_{i=1}^{N} \mathbf{A}_{\bullet,i} \mathbf{B}_{i,\bullet}$$
.

$$\min_{\mathbf{A},\mathbf{B}} \|\mathbf{Z} - \mathbf{A}\mathbf{B}\|_F^2, \text{ s.t. supp}(\mathbf{A}) \subseteq \mathbf{S}_{\mathrm{bf}}^{(4)}, \text{ supp}(\mathbf{B}) \subseteq \mathbf{S}_{\mathrm{bf}}^{(3)} \mathbf{S}_{\mathrm{bf}}^{(2)} \mathbf{S}_{\mathrm{bf}}^{(1)} \tag{2}$$

Fact:
$$AB = \sum_{i=1}^{N} A_{\bullet,i} B_{i,\bullet}$$
.

Constraint on the pair of factors

$$\operatorname{supp}(A)\subseteq \textbf{S}_{\text{bf}}^{(4)}=\textbf{S}_{\text{bf}}^{(4)}$$

$$\operatorname{supp}(\mathbf{B}) \subseteq \mathbf{S}_{\mathsf{bf}}^{(3)} \mathbf{S}_{\mathsf{bf}}^{(2)} \mathbf{S}_{\mathsf{bf}}^{(1)}$$

$$\min_{\mathbf{A},\mathbf{B}} \|\mathbf{Z} - \mathbf{A}\mathbf{B}\|_F^2, \text{ s.t. supp}(\mathbf{A}) \subseteq \mathbf{S}_{\mathrm{bf}}^{(4)}, \text{ supp}(\mathbf{B}) \subseteq \mathbf{S}_{\mathrm{bf}}^{(3)} \mathbf{S}_{\mathrm{bf}}^{(2)} \mathbf{S}_{\mathrm{bf}}^{(1)}$$
 (2)

Fact:
$$AB = \sum_{i=1}^{N} A_{\bullet,i} B_{i,\bullet}$$
.

Constraint on the pair of factors

$$\operatorname{supp}(\mathbf{A}) \subseteq \mathbf{S}_{\mathsf{bf}}^{(4)} = \mathbf{S}_{\mathsf{bf}}^{(4)}$$

$$\operatorname{supp}(\mathbf{B}) \subseteq \mathbf{S}_{\mathsf{bf}}^{(3)} \mathbf{S}_{\mathsf{bf}}^{(2)} \mathbf{S}_{\mathsf{bf}}^{(1)}$$

Constraint on the rank-one matrices

$$\min_{\mathbf{A},\mathbf{B}} \|\mathbf{Z} - \mathbf{A}\mathbf{B}\|_F^2, \text{ s.t. supp}(\mathbf{A}) \subseteq \mathbf{S}_{\mathrm{bf}}^{(4)}, \text{ supp}(\mathbf{B}) \subseteq \mathbf{S}_{\mathrm{bf}}^{(3)} \mathbf{S}_{\mathrm{bf}}^{(2)} \mathbf{S}_{\mathrm{bf}}^{(1)}$$
 (2)

Constraint on the rank-one matrices

$$\sup(\mathbf{A}_{\bullet,1}\mathbf{B}_{1,\bullet}) \subseteq \blacksquare \blacksquare = \mathcal{S}_1 \qquad \cdots$$

$$\sup(\mathbf{A}_{\bullet,2}\mathbf{B}_{2,\bullet}) \subseteq \blacksquare \blacksquare = \mathcal{S}_2 \qquad \sup(\mathbf{A}_{\bullet,N}\mathbf{B}_{N,\bullet}) \subseteq \blacksquare \blacksquare = \mathcal{S}_N$$

Theorem ([Le et al. 2021; Zheng et al. 2022])

The rank-one matrices have **pairwise disjoint supports**. Consequently, (1) is polynomially solvable and admits an essentially unique solution.

$$\min_{\mathbf{A},\mathbf{B}} \|\mathbf{Z} - \mathbf{A}\mathbf{B}\|_F^2, \text{ s.t. supp}(\mathbf{A}) \subseteq \mathbf{S}_{\mathrm{bf}}^{(4)}, \text{ supp}(\mathbf{B}) \subseteq \mathbf{S}_{\mathrm{bf}}^{(3)} \mathbf{S}_{\mathrm{bf}}^{(2)} \mathbf{S}_{\mathrm{bf}}^{(1)}$$
 (2)

Constraint on the rank-one matrices

$$\operatorname{supp}(\mathbf{A}_{\bullet,1}\mathbf{B}_{1,\bullet}) \subseteq \square \square = \mathcal{S}_1 \qquad \cdots$$

$$\operatorname{supp}(\mathbf{A}_{\bullet,2}\mathbf{B}_{2,\bullet}) \subseteq \square \square = \mathcal{S}_2 \qquad \operatorname{supp}(\mathbf{A}_{\bullet,N}\mathbf{B}_{N,\bullet}) \subseteq \square \square = \mathcal{S}_N$$

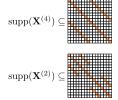
Theorem ([Le et al. 2021; Zheng et al. 2022])

The rank-one matrices have **pairwise disjoint supports**. Consequently, (1) is polynomially solvable and admits an essentially unique solution.

Algorithm to solve (1):

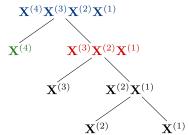
- **1** Extract the submatrices $\mathbf{Z}_{|S_i}$, i = 1, ..., N
- Perform best rank-one approximation for each submatrix

Let $\mathbf{Z} := \mathbf{X}^{(4)}\mathbf{X}^{(3)}\mathbf{X}^{(2)}\mathbf{X}^{(1)}$ such that:



$$\mathrm{supp}(\mathbf{X}^{(3)})\subseteq$$

$$\mathrm{supp}(\mathbf{X}^{(1)})\subseteq$$



The two-layer procedure is repeated **recursively**.

Lemma (Support of the partial products)

$$\operatorname{supp}(\mathbf{X}^{(4)}) \subseteq \mathbf{X}^{(4)} = \mathbf{S}^{(4)}_{\text{bf}} \qquad \operatorname{supp}(\mathbf{X}^{(3)}\mathbf{X}^{(2)}\mathbf{X}^{(1)}) \subseteq \mathbf{X}^{(4)} = \mathbf{S}^{(4)}$$

The corresponding rank-one supports are pairwise disjoint.

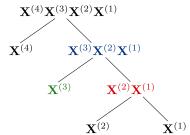
Let $Z := X^{(4)}X^{(3)}X^{(2)}X^{(1)}$ such that:

$$\mathrm{supp}(\mathbf{X}^{(4)})\subseteq$$

$$\mathrm{supp}(\mathbf{X}^{(2)})\subseteq$$

$$\mathrm{supp}(\mathbf{X}^{(3)})\subseteq$$

$$\mathrm{supp}(\mathbf{X}^{(1)})\subseteq$$



The two-layer procedure is repeated **recursively**.

Lemma (Support of the partial products)

$$\operatorname{supp}(\mathbf{X}^{(3)})\subseteq {\color{red}\mathbf{S}^{(3)}_{\mathtt{bf}}}=\mathbf{S}^{(3)}_{\mathtt{bf}}$$

$$\operatorname{supp}(\mathbf{X}^{(2)}\mathbf{X}^{(1)}) \subseteq \mathbf{S}_{\mathtt{bf}}^{(2)}\mathbf{S}_{\mathtt{bf}}^{(1)}$$

The corresponding rank-one supports are pairwise disjoint.

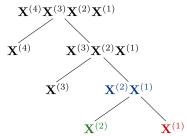
Let $\mathbf{Z} := \mathbf{X}^{(4)}\mathbf{X}^{(3)}\mathbf{X}^{(2)}\mathbf{X}^{(1)}$ such that:

$$\operatorname{supp}(\mathbf{X}^{(4)}) \subseteq \blacksquare$$

$$\operatorname{supp}(\mathbf{X}^{(2)}) \subseteq \blacksquare$$

$$\mathrm{supp}(\mathbf{X}^{(3)})\subseteq$$

$$\mathrm{supp}(\mathbf{X}^{(1)})\subseteq$$



The two-layer procedure is repeated **recursively**.

Lemma (Support of the partial products)

$$\mathrm{supp}(\mathbf{X}^{(2)})\subseteq \quad \bullet \quad \bullet \quad = \mathbf{S}^{(2)}_{\mathtt{bf}}$$

$$\operatorname{supp}(\mathbf{X}^{(1)}) \subseteq$$

The corresponding rank-one supports are pairwise disjoint.

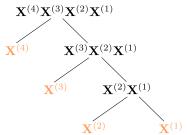
Let $Z := X^{(4)}X^{(3)}X^{(2)}X^{(1)}$ such that:

$$\mathrm{supp}(\mathbf{X}^{(4)})\subseteq \blacksquare$$

$$\mathrm{supp}(\mathbf{X}^{(2)})\subseteq \blacksquare$$

$$\mathrm{supp}(\mathbf{X}^{(3)})\subseteq \blacksquare$$

$$\mathrm{supp}(\mathbf{X}^{(1)})\subseteq \blacksquare$$



The two-layer procedure is repeated **recursively**.

Lemma (Support of the partial products)

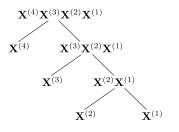
$$\operatorname{supp}(\mathbf{X}^{(2)})\subseteq \quad \blacksquare \quad = \mathbf{S}^{(2)}_{\mathtt{bf}}$$

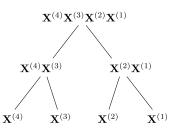
The corresponding rank-one supports are pairwise disjoint.

The butterfly factors $\{X^{(\ell)}\}_{\ell=1}^4$ are recovered (up to scaling ambiguities) from the product \mathbf{Z} .

Theoretical guarantees

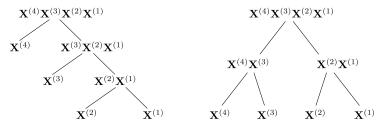
The algorithm works for any number of factors and any binary tree.





Theoretical guarantees

The algorithm works for any number of factors and any binary tree.

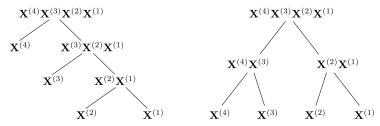


Theorem (Exact recovery guarantees [Zheng et al. 2022])

Except for trivial degeneracies, every tuple $(\mathbf{X}^{(\ell)})_{\ell=1}^J$ satisfying the butterfly constraint can be reconstructed by the algorithm from $\mathbf{Z} := \mathbf{X}^{(J)} \dots \mathbf{X}^{(1)}$ (up to unavoidable scaling ambiguities).

Theoretical guarantees

The algorithm works for any number of factors and any binary tree.



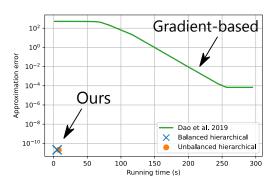
Theorem (Exact recovery guarantees [Zheng et al. 2022])

Except for trivial degeneracies, every tuple $(\mathbf{X}^{(\ell)})_{\ell=1}^J$ satisfying the butterfly constraint can be reconstructed by the algorithm from $\mathbf{Z} := \mathbf{X}^{(J)} \dots \mathbf{X}^{(1)}$ (up to unavoidable scaling ambiguities).

- Complexity is $\mathcal{O}(N^2)$ for both trees.
- We can use the algorithm in the non-exact setting.

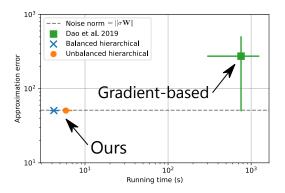
Faster and more accurate in the noiseless setting

Approximation of the DFT matrix by a product of J = 9 butterfly factors:



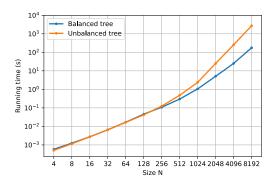
Also more robust in the noisy setting

Approximation of $\mathbf{Z} = \mathbf{DFT_N} + \sigma \mathbf{W}$ by a product of J = 9 butterfly factors:

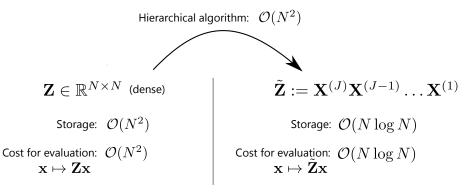


Our method scales with the matrix size

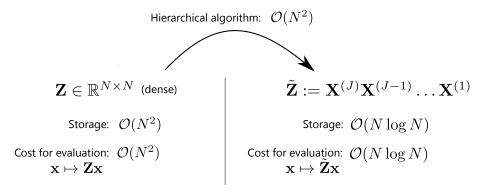
Approximation of the (noisy) DFT matrix of size $N=2^J$ by a product of J butterfly factors:



Conclusion and perspectives

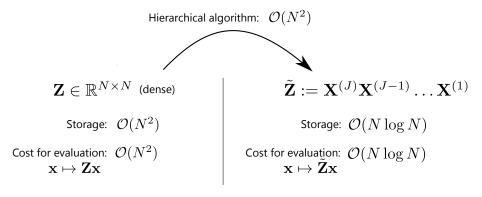


Conclusion and perspectives



Implementation in the FAµST toolbox at https://faust.inria.fr.

Conclusion and perspectives



Implementation in the FAµST toolbox at https://faust.inria.fr.

Future work

- Application in dictionary learning, sparse neural network training, ...
- Stability properties of the hierarchical algorithm

Thank you for your attention!

To know more:

Q.-T. Le, E. Riccietti, and R. Gribonval (2022)
Spurious Valleys, Spurious Minima and NP-hardness of Sparse Matrix
Factorization With Fixed Support

arXiv preprint, arXiv:2112.00386.

L. Zheng, E. Riccietti, and R. Gribonval (2022) Efficient Identification of Butterfly Sparse Matrix Factorizations *arXiv preprint*, arXiv:2110.01235.